
Technical Report

Model of the Air Conditioning (AC) system

Nathalie Moreno · David Bandera ·
Manuel F. Bertoa · Carlos Canal ·
Alejandro Pérez-Vereda · Paula Muñoz ·
Antonio Vallecillo

July 2020

Abstract This example models a smart Air Conditioning (AC) system, which
automatically calculates the optimal temperature of a room according to the
comfort preferences of the people in the room. This is accomplished in a trans-
parent manner to the users, being their Digital avatars which know the ranges
of temperatures where their users feel comfortable, and communicate directly
with the AC system when they detect that it supports this interface. We will
model here different versions of the system. The first one (called “crisp”) does
not consider any type of uncertainty, i.e., all numbers are exact figures and all
measures are precise, accurate and trustworthy. All sensors, devices and com-
munication networks are reliable too. Then, we start adding different types
of uncertainty to the model in the following sections, namely measurement
uncertainty (Sect. 2) and occurrence uncertainty (Sect. 3).

Contents

1 Crisp version . 2
1.1 Structure of the system . 2
1.2 Adding simulation parameters . 4
1.3 Scenarios . 6

2 Adding Measurement Uncertainty . 26
2.1 Structure of the system . 26
2.2 Scenario results for the measurement uncertainty (MU) version 26

3 Adding Occurrence Uncertainty . 36
3.1 Structure of the system . 36
3.2 Scenario Results for Measurement and Occurrence Uncertainties (MU-Occ.Occ)

Version . 38
A Algorithms for deciding the temperature of the AC system 47

A.1 Crisp and MU cases . 47
A.2 Measurement and Occurrence uncertainties 48

All authors are with the ITIS Software, Universidad de Málaga, Spain. E-mail:
{moreno,bandera,bertoa,canal,apvereda,paulam,av}@lcc.uma.es

2 Nathalie Moreno et al.

1 Crisp version

1.1 Structure of the system

A model for the Air Conditioning (AC) system is shown below. Its main ele-
ments are the following:

Fig. 1 Air Conditioning Model

– Class Clock simulates the passage of time. Its attribute NOW stores the
current time (in, e.g., POSIX seconds), and it is incremented every time
operation tick() is invoked. Operation run(n:Integer) invokes n times
operation tick().

– Class DigitalAvatar represents the digital avatars of users, i.e., the ap-
plications that run on the users’ mobile phones. Its attributes capture the
current distance to the AC controller (currentPosition, which is calcu-
lated by the phone, depending on the intensity of the Bluetooth signal),
as well as the user preferences about the min and max temperature of the
room that makes them feel comfortable. Attribute movement is used to
distinguish between users who remain still, i.e., sitting in the room, from
others moving around. Enumeration MovementType defines the types of
movements. Literal still is used to represent static users, who do not move

Model of the Air Conditioning (AC) system 3

throughout the simulation (and then attributes finaldistancetoAC and pace
are ignored). Moving objects move from their initial distance to the AC to
their final distance, at a pace given by attribute pace. Once they reach the
final position, oneway objects remain there, while nonstop objects reverse
their direction and move back to their initial position, continuing forever
moving up and down.

– Class AC represents the AC controller. Its attributes store the current beep
(that coincides with the clock’s time), the increase in temperature that is
able to carry out every time unit, and the standby temperature. Attribute
maxDistance indicates the reach of the AC system, beyond that distance
users are not visible and the effects of the AC system are lost. We want
to simulate two algorithms for deciding the optimal temperature of the
room, depending on the preferences of the users currently in the room,
which are represented by instances of class CurrentUser. The first algorithm
(Intervals) computes the minimum value that makes more users happy
(because it is inside in their comfort ranges). The second one (WAverage)
calculates a weighed average using as values the averages of the comfort
ranges of each user, and the weights are calculated in inverse proportion
to the square of the distance to the AC controller. Other AC attributes
indicate how many users are happy with the result of each algorithm, and
their average level of happiness (i.e. the average distances between their
optimal comfort temperature and that of the AC. Operation beep() is
invoked by the digital avatars of the users to indicate that they are in the
room. The OCL specification of these algorithms is included in Annex 1 of
this document.

– Class CurrentUser is used to store the information of the users that the
AC controller thinks are in the room. They reference the DigitalAvatar
instances that they represent and store a copy of the values of their at-
tributes, in case their connection is lost. Attribute lastBeep keeps track of
the last time the digital avatar of the user invoked operation beep() on
the AC class.

– Every time a digital avatar invokes a beep() operation, if there is no record
of the user, the AC controller creates an instance of class CurrentUser and
links it to the avatar; otherwise, it simply updates the user information with
the one provided in the beep() operation. In case a digital avatar does not
beep() for more than five time units, the AC controller assumes that the
corresponding user has left the room, and the associated CurrentUser is
deleted from the list of users maintained by the AC controller.

– Abstract class ActiveObject declares operation action(), used to sim-
ulate the system execution. On every invocation of the clock’s tick(),
operation action() is invoked on every object associated with the clock.
Thus every object has the opportunity to carry out the appropriate actions
specified in its behavior, emulating a round-robin scheduled system.

The following object diagram shows the state of such a system at one
moment in time (NOW=30).

4 Nathalie Moreno et al.

Fig. 2 Object Diagram, now=30

1.2 Adding simulation parameters

To be able to carry out different simulations, we have extended the initial
model with a new class (Test) in charge of creating the instances of the simu-
lation with different parameters. The system with this new class is as follows:

Fig. 3 Simulation Parameters

Class Test provides several methods, starting with init_(), whose goal
is to create the initial system and to set the simulation parameters. Each one

Model of the Air Conditioning (AC) system 5

corresponds to a different scenario, as described below. These methods create
instances of the Clock and AC classes (stored in its two first attributes), and the
number of DigitalAvatars defined in each scenario. The rest of the attributes
of the class Test allow storing the traces of the execution.

We can then simulate the system by simply creating an instance of class
Test, initializing the system, and asking the clock to advance. This can be
achieved by executing the following USE commands:
AC . soil> ! new Test ('t')
AC . soil> ! t . init_av ()
AC . soil> ! Clock1 . run (100)

The results can be copied into a csv file and visualized using Excel charts,
as we shall see later in Section 5.

6 Nathalie Moreno et al.

1.3 Scenarios

This section describes eight scenarios that we have defined in order to simulate
the system and understand how it works in different situations, using both
temperature-regulation algorithms.

Each scenario is defined by a name, a set of users, their positions, and the
parameters defined in their digital avatars. In the tables, reliable connections
are only considered when dealing with Occurrence uncertainty, but have been
added here for completeness. The results of the simulation of each scenario are
shown, using three charts: (1) the evolution of the room temperatures following
the two algorithms, (2) the number of users in the room, and how many of them
are happy with the optimal temperatures (when each temperature is within
their comfort range), and (3) the average level of happiness of the users in the
room (computed as the average difference between the optimal temperature
as set by the AC and the average of their comfort range).

1.3.1 Scenario 1 (“av”)

Five users, all inside the room at all times. 2 still users, 1 approaching the AC,
1 leaving it, one moving up and down.

AC controller Parameters:

– StandByTemp: 21.0 (temperatura en reposo)
– MaxDistance: 12.0 (podemos suponer que esto también representa el tamaño

de la sala)
– tempIncr: 0.1 (cuanto es capaz de cambiar la temperatura en 1 unidad de

tiempo)

Users Parameters:

Table 1 Scenario 1.

InitialDistance finalDistance Pace Movement minComfort maxComfort Reliable
ToAC ToAC Temp Temp Connection

User1 3.5 3.5 0.0 still 19.0 21.9 0.99
User2 12.0 3.0 0.25 oneway 22.0 25.0 0.99
User3 4.0 12.0 0.25 oneway 24.0 27.0 0.99
User4 10.0 10.0 0.0 still 20.0 24.0 0.33
User5 12.0 4.0 0.25 nonstop 22.0 26.0 0.99

Results for scenario 1.3.1, CRISP VERSION

Model of the Air Conditioning (AC) system 7

Fig. 4 Scenario 1. Evolution Temperatures

(a)
h!

Fig. 5 Scenario 1. Evolution Recorded Users

(a)
h!

Fig. 6 Scenario 1. Mean Happiness Level

8 Nathalie Moreno et al.

Fig. 7 Scenario 1. Evolution Temperatures 2

(a)
h!

Fig. 8 Scenario 1. Evolution Recorded Users 2

(a)
h!

Fig. 9 Scenario 1. Mean Happiness Level 2

Model of the Air Conditioning (AC) system 9

1.3.2 Scenario 2 (“av2”)

Five users, 3 of them inside the room at all times. 2 still users, 1 approaching
the AC starting from outside the room, 1 leaving the room, one moving up
and down, continuously entering and leaving the room.

AC controller Parameters:

– StandByTemp: 21.0 (temperatura en reposo)
– MaxDistance: 12.0 (podemos suponer que esto también representa el tamaño

de la sala)
– tempIncr: 0.1 (cuanto es capaz de cambiar la temperatura en 1 unidad de

tiempo)

Users Parameters:

Table 2 Scenario 2.

InitialDistance finalDistance Pace Movement minComfort maxComfort Reliable
ToAC ToAC Temp Temp Connection

User1 3.5 3.5 0.0 still 19.0 21.9 0.99
User2 13.0 3.0 0.25 oneway 22.0 25.0 0.99
User3 4.0 15.0 0.25 oneway 24.0 27.0 0.99
User4 10.0 10.0 0.0 still 20.0 24.0 0.33
User5 15.0 8.0 0.25 nonstop 22.0 26.0 0.99

Results for scenario 1.3.2, CRISP VERSION

Fig. 10 Scenario 2. Evolution of Temperatures

10 Nathalie Moreno et al.

Fig. 11 Scenario 2. Evolution of Recorded Users

Fig. 12 Scenario 2. Mean Happiness Level

Fig. 13 Scenario 2. Evolution Temperatures 2

Fig. 14 Scenario 2. Evolution Recorded Users 2

Model of the Air Conditioning (AC) system 11

Fig. 15 Scenario 2. Mean Happiness Level 2

12 Nathalie Moreno et al.

1.3.3 Scenario 3 (“MFB-Simple”)

Scenario where 3 users arrive gradually with moderate values that matching
at 23.0 ºC. They all stay inside the room.

AC controller Parameters:

– StandByTemp: 21.0 (temperatura en reposo)
– MaxDistance: 12.0 (podemos suponer que esto también representa el tamaño

de la sala)
– tempIncr: 0.1 (cuanto es capaz de cambiar la temperatura en 1 unidad de

tiempo)

Users Parameters:

InitialDistance finalDistance Pace Movement minComfort maxComfort Reliable
ToAC ToAC Temp Temp Connection

User1 13.0 2.0 0.5 oneway 22.0 24.0 0.99
User2 15.0 3.0 0.5 oneway 18.0 23.0 0.99
User3 17.0 4.0 0.5 oneway 23.0 25.0 0.99

Results for scenario 1.3.3, CRISP VERSION

Fig. 16 Scenario 3. Evolution Temperatures

