
Using UML and OCL Models to Realize
High-Level Digital Twins

Paula Muñoz, Javier Troya, and Antonio Vallecillo
ITIS Software. Universidad de Málaga, Spain

{paulam,jtroya,av}@uma.es

Abstract—Digital twins constitute virtual representations of
physically existing systems. However, their inherent complexity
makes them difficult to develop and prove correct. In this paper
we explore the use of UML and OCL, complemented with an
executable language, SOIL, to build and test digital twins at
a high level of abstraction. We also show how to realize the
bidirectional connection between the UML models of the digital
twin in the USE tool with the physical twin, using an architectural
framework centered on a data lake. We have built a prototype
of the framework to demonstrate our ideas, and validated it by
developing a digital twin of a Lego Mindstorms car. The results
allow us to show some interesting advantages of using high-level
UML models to specify virtual twins, such as simulation, property
checking and some other types of tests.

Index Terms—Model-based Software Engineering, Model-
based Testing, Digital Twins, UML, OCL, USE.

I. INTRODUCTION

In general, a Digital Twin (DT) is a digital replica of an
object, process or service that exists in the physical world
along with a bi-directional connection between the physical
entity and its virtual representation. The ideas behind Digital
Twins go back to the NASA/Apollo project, in which an iden-
tical space capsule on Earth was used to simulate the behavior
of the capsule in space. Although both objects were physical
entities, the evolution of digital technologies soon enabled the
development of full-fledged digital replicas of the physical
objects to be simulated, thus opening up new possibilities
beyond simulation, such as monitoring or what-if analysis
of the physical systems [1]. The advances in AI and Big
Data allowed adding further features to DT, such as behavior
prediction, preventive maintenance, or optimizations [2].

Engineering DT systems, and in particular testing them [3],
is challenging for many reasons, one of them being their
complexity: the digital replica has to faithfully emulate its
physical counterpart. One way to address this challenge is by
raising the level of abstraction, and this is where software
models, and in particular model-based software engineering,
can be of real help [4], [5]. Some authors have already claimed
the potential benefits of using high-level models to specify
and design the virtual replicas (i.e., the digital twins). These
lightweight models reflect the simplified structure, physics
and behavior of the physical twin “to reduce computational
load especially in upfront engineering activities; they allow
simulations of complex systems with fidelity in the appropriate
dimensions to answer questions with minimal computational
costs” [6]. The concept of multi-fidelity digital twins has also

been introduced [7], describing the advantages of modeling the
physical entity at different levels of abstraction, in this case,
for testing purposes.

Still, the problem of integrating these high-level models into
a DT system and connecting them to the physical entity is
not easy. Some solutions propose dedicated component-based
architectural frameworks that implement the basic infrastruc-
ture, and define domain-specific languages to describe the
models [8]–[12], with MontiArc [13] being the most notable
architectural language in this context.

In this paper, we explore the use of standard UML models,
enriched with OCL constraints, for the specification of digital
twins. We shall rely on USE [14] as modeling tool, since
it provides a wide variety of analysis capabilities for UML
models, including model validation, instance generation, or
invariant checking [15]. The behavioral aspects of the sys-
tems will be specified in SOIL [16], an executable language
available in USE. Incorporating these types of analyses into
the engineering of DT systems will allow engineers to exploit
the benefits of early analysis and testing of their DT, at a high
level of abstraction, and with reasonable computational costs.

The problem we address in this paper is how to connect
the high-level UML models of a digital twin with the actual
system, i.e., its physical twin. Another goal is to achieve this
in a modular way, so that, once validated, these lightweight
models could be replaced by more detailed models of the
system that provide finer-grained specifications.

We have defined a framework for the specification and
deployment of DT systems, that uses UML models to specify
the digital twins, and connects them through a Data Lake
repository [17] implemented in Redis [18] that provides the bi-
directional communication infrastructure between the digital
and physical twins. We have built a prototype to demonstrate
our ideas and validated it by developing a digital twin system
of a Lego Mindstorms car.

The structure of this document is as follows. After this intro-
duction, Sect. II briefly describes the background of our work
and presents the example used to motivate our proposal. Next,
Sect. III describes our proposed architecture for specifying and
deploying digital twins, and Sect. IV illustrates how to use it
applying it to the example case study. Finally, Sect. V relates
our work to other similar approaches and Sect. VI concludes
with an outline of future work.



Figure 1. The Lego car used as physical twin.

II. BACKGROUND

A. Digital Twins

A Digital Twin (DT) is a comprehensive digital representa-
tion of an actual system, service or product (the Physical Twin,
PT), synchronized at a specified frequency and fidelity [19].
The digital twin includes the properties, condition and be-
havior of the physical entity through models and data, and
is continuously updated with real-time system data about the
PT performance, maintenance, and health status throughout its
entire lifetime [4], [6], [20]. The exchange of data between
the digital and the physical twins takes place through bi-
directional data connections. This is why many authors have
argued that a DT system contains three dimensions: physical,
digital, and the connections between them [1].

Additionally, other authors consider that a DT system may
also comprise a set of Services that permit exploiting the
data exchanged by the two twins in different ways [21], [22].
Examples of such services include, among others: Dashboards
for visualizing and displaying the data in different formats;
Machine Learning (ML) components to provide decision sup-
port and alerts to users, or to predict changes in the PT over
time, e.g., to achieve preventive maintenance; or algorithms to
analyze the available data to improve the PT performance or
implement self-adaptive mechanisms.

This is the architecture that we shall adopt and use in our
proposal, as described later in Sect. III, see Fig. 3.

B. Motivating example: a Lego Mindstorms vehicle

To demonstrate our proposal and to initially validate it, as
physical entity we will use a Lego Mindstorms NXT car,
which is a small car-like vehicle with sensors, see Fig. 1.
The car is able to move, detect obstacles, and interact with its
environment in different ways, e.g., by following a colored line
on the floor. It uses a bluetooth connection to exchange data
and commands with a computer, including the information
about the current state of the car (position, speed) and the
readings of its sensors.

In addition to a pose-provider, which determines its planar
coordinates and the angle of its current direction, the car has
an engine to move forward and rotate its direction at a certain
angle. It also has three types of sensors: an ultrasonic sensor
capable of detecting the distance to the object in front of it, a

Figure 2. A simplified view of a physical entity.

light sensor that can establish the color of the ground beneath
it, and two touch sensors used as a bumper to determine
whether the car has collided or not.

The car downloads from the computer the software that
drives the vehicle, which can define different behaviors. For
example, in the LineFollowingBehavior, the car keeps moving
forward as long as it detects a black line beneath it. If the color
detected is not black, it means that the car is no longer above
the line it was supposed to follow. Then, the car stops and
starts turning left and right, increasing the angle each time,
until the color is detected again. Once the line is found, the
car continues moving. Further behaviors can be defined and
incorporated to the car, such as turning a number of degrees
when an obstacle hits the bumper, or when the distance to the
object in front is below a given threshold, for example. Note
that this software is integrated in the car, i.e., it is part of the
physical twin.

A digital twin can be used to improve the existing physical
entity (in this case, the car) in several ways, for instance:
� Simulation analysis. Mindstorms vehicles can execute

user-defined software to perform specific tasks. The DT
could specify the intended behavior of such applications
and simulate their behavior. A testing component could
compare the traces of both twins and check that the they
both behave as expected [5].

� Calibration. Simulations would help deciding the best
values for the configuration parameters of the car software
to save energy or to perform its tasks faster.

� Improve the system behavior. The DT can learn from the
obstacles encountered by the car and build a floormap of
the area around which the car is moving. Such a map
can be used to avoid future collisions. Note that the car
simply knows how to obey orders or to follow a colored
line, without any other intelligence. A DT would allow
the implementation of additional self-adaptive features.

III. A FRAMEWORK FOR DEFINING AND DEPLOYING DTS

To realize our proposal, we have defined a reference ar-
chitecture for the specification and deployment of DTs. In
our work, we define the DT using high-level UML models,
but this architecture can be applied to the final systems by
replacing the UML models by lower-level implementations.
Before describing its main components, let’s start with how
physical entities are represented in it. Figure 2 shows the
relevant elements of a physical entity for our purposes.

In general, a physical entity interacts with its environment
through a set of inputs (In) and outputs (Out). The values of



Figure 3. Our proposed Digital Twin System Framework.

inputs are normally generated by sensors that detect events or
changes in its environment. For example, the distance to an
obstacle, the presence of a particular color on the ground, or
the fact that the car bumper has detected a collision. Outputs
constitute the reactions of the physical entity to input events
from its environment, to commands issued to it or to internal
changes. Examples include changes in the speed of the car
or its direction. They are usually captured by other sensors,
which also allow knowing the state of the physical entity, e.g.
the battery level or the exact position of the car.

Physical entities can also accept external orders in terms of
commands that control their behavior (such as move or rotate)
or changes in the values of their configuration parameters (e.g.,
the speed of the car at cruising mode). This is represented in
Fig. 2 by the Command and Control (C&C) incoming arrow.

Figure 3 shows the architecture that we propose for specify-
ing and deploying digital twins. It is inspired in the architec-
ture proposed by several authors for realizing DTs, composed
of the physical part, the digital part, the connection between
them, and a set of services [21], [22]. Here, the physical entity
that was depicted in Fig. 2 is shown to the right, acting as the
physical twin (PT). The digital twin (DT) is a replica of the
physical entity, i.e., its specular image.

The communication between them is achieved through a
Data Lake (DL). As defined in [17], a data lake is “a
flexible, scalable data storage and management system, which
ingests and stores raw data from heterogeneous sources in
their original format, and provides query processing and data
analytics in an on-the-fly manner.”

The rest of the components of the architecture use the DL
to write data and obtain information, in a loosely-coupled and
asynchronous manner. Basically, this implements a Blackboard
architectural pattern [23] but with the property that the in-
formation is stored in raw format (i.e., as produced by the
sources). The different components access the DL by means
of drivers that transform the data into the formats that each
component understands. The drivers are represented in Fig. 3
by the white rectangles surrounding the DL.

The white square boxes attached to the physical entity con-
nections In, Out, and C&C, are able to intercept the information
that flows through them and record it in the DL. Similarly,
the drivers can query the DL for commands or inputs to the

physical entity that have been stored by other components, and
send them to the physical entity. This allows, e.g., emulating
the environment of the physical entity. They can also be
used to change parameters during run-time or implement self-
adaptive behaviors. From the perspective of the DT, the drivers
can be used, e.g., to emulate the inputs and commands received
by the physical entity and to record its outputs in the DL.

The Service components (S1,S2,..., Sn) are in charge of
implementing the additional functionality that a digital twin
system can provide. Examples of such components include
dashboards that dynamically visualize the data, or algorithms
that learn from the past movements of the car and its collisions,
draw floormaps, and avoid the obstacles. Note that in the
Blackboard architectural pattern, any (permitted) component
can write in the DL. This allows the services to issue com-
mands to the physical entity, as if they were its external users.

Finally, given that our emphasis is on testing digital twins,
the Analysis components (A1,A2,..., An) are in charge of
implementing different types of tests on the physical entity, the
digital twin, their connection, behaviors, or synchronization.
For example, a monitoring component can check that the
traces produced by both the DT and the PT are equivalent [5].
Another analysis component can exercise only one of the
twins, sending commands to it and checking that the responses
are as expected. The analysis components can also serve to
test the Service components, validating that the algorithms
they implement to provide self-adaptive behaviors or machine
learning predictions do work.

Note as well that the framework’s architecture allows having
more than one digital twin, each one focusing on specific as-
pects of interest of the physical entity. Likewise, more than one
physical twin can be integrated into the architecture. Service
or analysis components can also be dynamically added to the
system during its execution, given that all communications
between the components happen through the DL.

IV. IMPLEMENTATION

This section describes how we have implemented the main
components of our reference architecture, and how they are
connected between them. As mentioned above, all connections
are made through the DL. The description of all framework
components is illustrated for the case of the Lego car.

A. High-level UML Digital Twins

In this work we are interested in the specification of digital
twins using UML and OCL models. This allows high-level
specification of relevant characteristics of the physical entity,
providing lightweight models that represent its simplified
structure and behavior. These models can be produced during
the early engineering stages, with lower development costs
than the full implementation of the digital replica, and allow
simulations and different types of analysis to be performed
with considerably reduced computational costs.

For example, in the case of the Lego car, Fig. 4 shows a
UML model with its main components: the engine (Motor) to
move forward and to rotate its direction a certain angle, and




